(4x^2)+(3x^2)=25

Simple and best practice solution for (4x^2)+(3x^2)=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2)+(3x^2)=25 equation:



(4x^2)+(3x^2)=25
We move all terms to the left:
(4x^2)+(3x^2)-(25)=0
We add all the numbers together, and all the variables
7x^2-25=0
a = 7; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·7·(-25)
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{7}}{2*7}=\frac{0-10\sqrt{7}}{14} =-\frac{10\sqrt{7}}{14} =-\frac{5\sqrt{7}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{7}}{2*7}=\frac{0+10\sqrt{7}}{14} =\frac{10\sqrt{7}}{14} =\frac{5\sqrt{7}}{7} $

See similar equations:

| 15x-4-12x=14 | | -35=8(-7+2v)-5(2v+1) | | 4(y-8)-4(8-y)=8 | | 3x-85=13x+175 | | -m-8m=9-5m-m | | 9x-7+70=180 | | 4+n=-n | | -7(4v-7)+5(-4v-3)=34 | | 2=10+n/2 | | 8x=-1-9 | | 12x+16=6x | | -7+4x+3x=60-2x-13 | | 9=6(7-3a)-3(1-a) | | 5y-4(y-3)=17 | | 282=-5(7m-6)+7m | | 17=6-13xX | | -46+6x=42+2x | | 1/2(6x-10)+1/3(6+9)=0 | | 9(z-4)-7z=15z-10 | | 5x-(2x-9)=36 | | 282=2w+2(2w-3) | | 5x-8x+11=35 | | 504=-28k | | -8(9r-2)+2r=366 | | 15=a/5-4 | | 4x^2+3x^2=25 | | 4x+43=4x+43 | | -24a=-192 | | -149=-4-5(5+6p) | | 28+p=3 | | -119=7(1+6p) | | -162=-6x+6(1+8x) |

Equations solver categories